Crystal structure of a novel JmjC-domain-containing protein, TYW5, involved in tRNA modification
نویسندگان
چکیده
Wybutosine (yW) is a hypermodified nucleoside found in position 37 of tRNA(Phe), and is essential for correct phenylalanine codon translation. yW derivatives widely exist in eukaryotes and archaea, and their chemical structures have many species-specific variations. Among them, its hydroxylated derivative, hydroxywybutosine (OHyW), is found in eukaryotes including human, but the modification mechanism remains unknown. Recently, we identified a novel Jumonji C (JmjC)-domain-containing protein, TYW5 (tRNA yW-synthesizing enzyme 5), which forms the OHyW nucleoside by carbon hydroxylation, using Fe(II) ion and 2-oxoglutarate (2-OG) as cofactors. In this work, we present the crystal structures of human TYW5 (hTYW5) in the free and complex forms with 2-OG and Ni(II) ion at 2.5 and 2.8 Å resolutions, respectively. The structure revealed that the catalytic domain consists of a β-jellyroll fold, a hallmark of the JmjC domains and other Fe(II)/2-OG oxygenases. hTYW5 forms a homodimer through C-terminal helix bundle formation, thereby presenting a large, positively charged patch involved in tRNA binding. A comparison with the structures of other JmjC-domain-containing proteins suggested a mechanism for substrate nucleotide recognition. Functional analyses of structure-based mutants revealed the essential Arg residues participating in tRNA recognition by TYW5. These findings extend the repertoire of the tRNA modification enzyme into the Fe(II)/2-OG oxygenase superfamily.
منابع مشابه
Expanding role of the jumonji C domain as an RNA hydroxylase.
JmjC (Jumonji C) domain-containing proteins are known to be an extensive family of Fe(II)/2-oxoglutarate-dependent oxygenases involved in epigenetic regulation of gene expression by catalyzing oxidative demethylation of methylated histones. We report here that a human JmjC protein named Tyw5p (TYW5) unexpectedly acts in the biosynthesis of a hypermodified nucleoside, hydroxywybutosine, in tRNA(...
متن کاملThe Jumonji C domain-containing protein JMJ30 regulates period length in the Arabidopsis circadian clock.
Histone methylation plays an essential role in regulating chromatin structure and gene expression. Jumonji C (JmjC) domain-containing proteins are generally known as histone demethylases. Circadian clocks regulate a large number of biological processes, and recent studies suggest that chromatin remodeling has evolved as an important mechanism for regulating both plant and mammalian circadian sy...
متن کاملRice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development.
Histone lysine methylation is an important epigenetic modification with both activating and repressive roles in gene expression. Jumonji C (jmjC) domain-containing proteins have been shown to reverse histone methylation in nonplant model systems. Here, we show that plant Jumonji C proteins have both conserved and specific features compared with mammalian homologues. In particular, the rice JMJD...
متن کاملChromatin remodeling and the circadian clock: Jumonji C-domain containing proteins.
Circadian rhythms are a universal way for organisms, ranging from prokaryotes to humans, to maintain coordination with the daily changes of light and temperature. It is known that a functional circadian clock confers enhanced fitness. In both animals and plants, diverse physiological processes are affected by the clock and more than 10% of transcripts show a circadian rhythm. Recent advances in...
متن کاملTHUMP from archaeal tRNA:m2G10 methyltransferase, a genuine autonomously folding domain
The tRNA:m2G10 methyltransferase of Pyrococus abyssi (PAB1283, a member of COG1041) catalyzes the N,N-dimethylation of guanosine at position 10 in tRNA. Boundaries of its THUMP (THioUridine synthases, RNA Methyltransferases and Pseudo-uridine synthases)—containing N-terminal domain [1–152] and C-terminal catalytic domain [157–329] were assessed by trypsin limited proteolysis. An interdomain fle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 39 شماره
صفحات -
تاریخ انتشار 2011